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ABSTRACT 

Gas flows in microfluidic devices suffer from non-equilibrium effects. To capture various non-equilibrium 
phenomena in the slip and early transition regime, the hydrodynamic system is extended from the Navier-
Stokes-Fourier equations to the regularised 26 moment equations via Grad’s moment method based on 
kinetic theory. It is shown in this lecture that the extended hydrodynamic equations can be effectively 
applied to micro-electro-mechanical-systems analytically and numerically. Well known non-equilibrium 
phenomenon, such as Knudsen layers and the Knudsen minimum, are used to validate the extended 
hydrodynamic model. It is demonstrated that the moment method can be used to predict gas flows in 
micro-electro-mechanical-systems.     

1.0 INTRODUCTION 

Due to the rapid development in fabrication technology for constructing micro-electro-mechanical-
systems (MEMS), fluid flow at the micro- and nano-scale has received considerable attention [1]. A basic 
understanding of the nature of flow and heat transfer in these devices is considered essential for efficient 
design and control of MEMS. Engineering applications for gas microflows include miniaturised heat 
exchangers for cooling integrated circuits, hand-held gas chromatography systems for the detection of 
trace concentrations of air-borne pollutants, miniature heat pumps and novel high-throughput gas flow 
cytometers, etc.. Gas flows in micro-scale devices suffer from non-equilibrium effects when the gas 
molecular mean free path is the same order as the characteristic length of the device.  The degree of non-
equilibrium of a gas is generally expressed through the Knudsen number (Kn=λ/L) which is the ratio of 
the molecular mean free path, λ, to a typical dimension of the flow field, L. The non-equilibrium gas flow, 
or rarefied gas dynamics has been explored extensively for more than a century in association with high-
speed high-altitude flow applications, such as space re-entry vehicles, and flows under ultra-low pressure 
(vacuum) conditions, where λ has a large value. Gas flow in micro-scale devices can suffer from 
rarefaction effects because the characteristic length of the device, L, is so small that it is comparable to the 
mean free path of the gas, even under atmospheric conditions. Beskok [2] compiled a typical range of gas 
flow regimes in terms of micro device dimension, as show in Figure 1. With the advent of MEMS, there 
has been a renewed impetus in the development of new and efficient approaches for modelling low-speed 
slip- and transitional-flows that can capture non-intuitive phenomena, such as Knudsen layers and the 
Knudsen minimum [3], and provide an accurate description of a gas that is not too far from 
thermodynamic equilibrium [4, 5]. 
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Figure 1: Characteristic length scales of typical microfluidic components and the corresponding 
Knudsen number at standard atmospheric conditions.  Adapted from Beskok [2].        

The key flow features for MEMS are that flow is laminar, typically Reynolds number Re < 1 and Mach 
number Ma < 1 and geometry can be complex. The different rarefaction regimes can be summarised 
according to the value of the Knudsen number [6]: (i) no slip (Kn ≤ 10-3); (ii) slip (10-3 < Kn ≤10-1); (iii) 
transition (10-1 < Kn ≤ 10); and (iv) free molecular flow Kn > 10, respectively. Most MEMS operate at the 
slip and early transition regime (Kn < 1) as shown in figure 1. Different approaches have been employed 
by various researchers to capture and describe the non-equilibrium phenomena that arise due to an 
insufficient number of molecular collisions occurring under rarefied conditions. These approaches can be 
broadly divided into two specific categories: the microscopic and the macroscopic. In this lecture, the 
emphasis will be on the development of the macroscopic methods and their application towards 
engineering configurations. Microscopically, the Boltzmann equation [7] provides an accurate description 
of a dilute gas at all degrees of rarefaction and describes its state through a molecular distribution function 
that treats the gas as a large number of interacting molecules, colliding and rebounding according to 
prescribed laws. However, solutions of the Boltzmann equation, either directly [8, 9] or through the direct 
simulation Monte Carlo (DSMC) method [10], entails significant mathematical complexity and can be 
computationally expensive, particularly for low-speed, low Knudsen number flows in the slip and 
transition regime. 

Due to the difficulties associated with solving the Boltzmann equation, there is significant effort being 
made to construct alternative solution strategies that can provide an accurate description of a gas with 
Knudsen numbers that extend into the transition regime. For designing components in MEMS, it is 
desirable that any new developments have: (i) computational efficiency comparable to conventional 
hydrodynamic formulations; (ii) the ability to handle real geometries, and (iii) under appropriate 
conditions, will recover the Navier-Stokes-Fourier solution. The two main approaches used to derive these 
extended hydrodynamic (EHD) equations are the Chapman-Enskog (CE) expansion [11] and the method 
of moments developed by Grad [12]. 

The Chapman-Enskog approach expands the molecular distribution function in powers of Kn to construct 
the constitutive relationships using the conventional hydrodynamic variables and their derivatives. The 
zeroth-order expansion yields the Euler equations and the first-order results in the Navier-Stokes-Fourier 
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(NSF) equations. In association with velocity-slip and temperature-jump wall boundary conditions, the 
NSF equations can predict the velocity profile in a micro-channel fairly accurately in the slip regime for 
isothermal flows. Higher order expansions yield the Burnett equations (second-order), Super-Burnett 
equations (third-order), and so on, which can be unstable in time dependent problems. In Grad’s approach, 
a set of governing partial differential equations representing the moments of the molecular distribution 
function are derived from the Boltzmann equation. However, moments of higher order always appear in 
each moment equation and the set of moment equations is not closed. To avoid the necessity of dealing 
with an infinite number of moment equations, a closure procedure is required that relates the higher-order 
moments to those of lower order. In the seminal work of Grad [11], the set of moment equations was 
closed at the second-moment level, which involves 13 moments: density, momentum, energy, heat flux, 
and pressure deviator. It is interesting to point out that the constitutive relationships established by the 
Chapman-Enskog method, at any order, can be regarded as a first moment closure method with 5 
moments. To close the set of moment equations at the second-moment level, Grad [11] expanded the 
distribution function in Hermite polynomials about the local Maxwellian to third-order accuracy and set 
the trace-free part of the third moments to zero. As a result, the original 13 moment equations derived by 
Grad (G13) are hyperbolic and lack any gradient transport mechanism. They are not suitable for 
computing boundary layers which appear in MEMS. 

Struchtrup and Torrilhon [13] regularised Grad’s 13 moment equations (R13) by applying a CE-like 
expansion to the governing equations of the moments higher than second order. Algebraic constitutive 
relationships were then established between the higher moments and the second and lower moments. The 
R13 equations can give reliable results for Knudsen numbers up to Kn < 0.25.  To extend the capability of 
the moment method to larger Knudsen numbers in the early transition regime, we extended the 
regularisation theory to the 26 moment equations (R26) [14]. However, to apply the regularised moment 
equations to confined flows, such as those found in microfluidic channels, wall boundary conditions are 
required for higher moments in addition to the velocity-slip and temperature-jump conditions. We 
pioneered the treatment of wall boundary conditions for macroscopic variables from kinetic boundary 
conditions [15]. The treatment of solid boundaries was further improved by Torrilhon and Struchtrup [16]. 
This opens the door to solve the moment equations for flows in confined geometries.   

For simple geometries, such as a straight channel or pipe, analytical solutions can be obtained from the 
linearised moment equations [17-21]. However, for real engineering applications of complicated 
geometries, numerical procedures have to be employed to obtain solutions. To numerically solve the 
moment equations for parabolic and elliptic flows within a conventional computational fluid dynamics 
(CFD) approach, such as the finite volume (FV) method, is quite challenging because the gradient 
transport mechanisms are not explicitly expressed in the momentum and energy equations of the moment 
system. The inadequacy of the standard FV method for the governing equations without any gradient 
transport terms is well recognised [22], so that methods for dealing with hyperbolic problems are required, 
such as Riemann solvers [23], TVD schemes [24] and ENO schemes [25]. These schemes are complex 
and computationally expensive for multidimensional confined flow, particularly at low speed. Gu and 
Emerson [14, 15] proposed a primitive variable transformation approach to split the higher order moments 
into their gradient and non-gradient transport components. Recently, a new strategy is proposed to solve 
the regularised moment equations on a collocated grid for low speed flows in confined geometries [26].  In 
this lecture, the approach to build up macroscopic governing equations by the moment method will be 
introduced. The procedure to solve the moment equations for low speed flows in MEMS will be described 
and validation examples will be given.       

2.0 MOMENT METHOD 

Kinetic theory accounts for a molecule’s movement and interaction through a molecular phase-density 
distribution function, F(ξ, x, t), which satisfies the Boltzmann integro-differential equation [6], where x 
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and ξ are the position and velocity vectors, respectively, of a molecule at time t, and F(ξ, x, t)dxdξ gives 
the number of molecules whose velocities lie within dξ in a volume element dx. For convenience, a mass 
distribution function is used in the present study and is defined by 

 ( ) ( ), , , ,f t mF t=ξ ξx x , (1) 

where m is the mass of a molecule.  The Boltzmann equation, expressed by [6]: 

 ( ),i i
i i

f f fa Q f f
t x

ξ
ξ

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2) 

is the central equation in kinetic theory, the properties of which can be used to guide the development of 
kinetic and macroscopic models for rarefied gas flow. Here t and xi are temporal and spatial coordinates, 
respectively, and any suffix i, j, k represents the usual summation convention. The external acceleration is 
denoted by ai. On the right hand side of equation (2), Q(f, f) is the collision integral. The most interesting 
feature of the Boltzmann equation is that the macroscopic irreversible process of entropy is imbedded in it, 
known as the H-theorem [6].  

Kinetic theory associates hydrodynamic quantities with the moments of the distribution function. Once the 
distribution function, f, is known, its moments with respect to ξ can be determined. For example, the 
density, ρ, and the momentum, ρui, can be obtained from [27]: 

 and i if d u f dρ ρ ξ= =∫ ∫ξ ξ . (3) 

An intrinsic or peculiar velocity is introduced as 

 ,i i ic uξ= −  (4) 

so that the moments with respect to ui can be conveniently calculated as 

 
1 2 1 2........ ....... .

N Ni i i i i ic c c f dρ = ∫ ξ  (5) 

The pressure tensor is a second moment of the distribution function and can be separated as follows: 

 ij i j ij ij ij ijp c c f d p p pδ δ σ< >= = + = +∫ ξ  (6) 

where δij is the Kronecker delta function, p = pkk/3 is the pressure, and σij = p<ij> is the deviatoric stress 
tensor. The angular brackets denote the traceless part of a symmetric tensor. Furthermore, the thermal 
energy density and the heat flux vector are given, respectively, by 

 21 3 3
2 2 2

kc f d T RT
m

ρε ρ ρ= = =∫ ξ , (7) 

 21
2i iq c c f d= ∫ ξ . (8) 

where c2 = ckck. The temperature, T, is related to the pressure and density by the ideal gas law, 
p=ρ(k/m)T=ρRT, where k is Boltzmann's constant and R is the gas constant. 
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Equation (2) tells us that there is only one equilibrium state and its distribution function is expressed by 
the Maxwellian,  fM, parameterised by traditional hydrodynamic variables, ρ, T, and ui as [6]: 

 
( )

2

3
exp .

22
M

cf
RTRT

ρ

π

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (9) 

When the gas is away from the equilibrium state, an infinite number of independent moments can be 
defined from equation (5).  In other words, to recover the distribution function, f, at the state of non-
equilibrium, an infinite number of moments are required.  In the moment method, a limited number of 
moments are employed to approximate the non-equilibrium state.    

The five collision invariants, ψ = (1, ξi, c2), which satisfy [6]:  

 ( ), 0,Q f f d =∫ψ ξ  (10) 

lead to the conservation laws for mass, momentum and energy, respectively, as [27]: 

 0i

i

u
t x

ρρ ∂∂
+ =

∂ ∂
, (11) 

 i j iji
i

j j i

u uu p a
t x x x

ρ σρ
ρ

∂ ∂∂ ∂
+ + = − +

∂ ∂ ∂ ∂
, (12) 

 2 2
3 3

ji i i
ij

i i i i

uu T q uT p
t x R x R x x

ρρ σ
∂⎛ ⎞∂ ∂ ∂∂

+ + = − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
. (13) 

To close the above set of equations, a CE expansion of the distribution function in powers of Kn is applied 
to the Boltzmann equation.  The traditional hydrodynamic variables, ρ, T, and ui and their derivatives are 
used to estimate the values of σij and qi. Alternatively, the governing equations for σij, qi and higher 
moments can be derived from the Boltzmann equation.  However, there appear even higher order moments 
in the relevant moment equations. There are various ways to close the moment equation set [28]. 

In the moment method proposed by Grad [11], the distribution function, f, is expanded in Hermite 
polynomials as: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 30 0 1 1 2 2

0

1 1 1lim .....
! 2! 3!

N n n
M A A M i i ij ij ijk ijkN n

f f a H f a H a H a H a H
n→∞ =

⎛ ⎞= = + + + +⎜ ⎟
⎝ ⎠

∑  (14) 

where ( )n
AH  is the Hermite function and ( )n

Aa  are the coefficients. All of the polynomial coefficients are 
linear combinations of the moments of f. An infinite set of Hermite coefficients is equivalent to the 
molecular distribution function and no kinetic information is lost in such a system. In practice, the 
molecular distribution function has to be truncated and the specific problem to be addressed will determine 
the order of the truncation. Usually, the truncated distribution function is called Grad’s distribution 
function and is denoted as fG.  

It is expected that as Kn increases, the order of the truncated Hermite polynomials should increase to 
provide an accurate description of the flow conditions. By choosing a sufficient number of Hermite 
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coefficients, a general solution of the Boltzmann equation can be approximated. The governing equations 
of the moments involved in the Hermite coefficients can be derived from the Boltzmann equation. 
However, the set of equations are not closed, since the fluxes and the collision terms are unknown. The 
truncated distribution function is used to calculate the collision terms and higher moments in the fluxes as 
functions of the chosen moments to close the equation set. All the moments included in the truncated 
distribution function construct the Grad moment manifold (GMM). These moments relax to the 
equilibrium state at a rate governed by their corresponding governing equations. In Grad’s original 
approach, the remaining higher moments outside the GMM are calculated as a linear combination of the 
moments in the GMM without any dynamic corrections. In the regularised moment method, a CE 
expansion is applied to the higher order moment equations, so that the remaining higher moments outside 
the GMM from the truncated distribution function approach the GMM (not the equilibrium state) at a fast 
finite rate, then relax to the equilibrium state along with the GMM [28]. The different relaxation process 
models used in the construction of macroscopic equations are schematically shown in Figure 2.  Circles 
with broken lines represent a non-equilibrium state of an infinite number of independent moments. Circles 
with solid line represent an equilibrium or quasi-equilibrium sate which can be represented by a finite 
number of independent moments. It clearly illustrates the essential role of the CE expansion in the 
modelling process. An infinite number of independent moments can be absorbed into a system with a 
finite number of moments through a CE expansion.     

  
(a) CE expansion on the Boltzmann equation (b) Grad’s moment method 

 
(c) Regularised moment method 

Figure 2: Schematic modelling of relaxation process in the moment method.      

2.1 Continuum Hydrodynamic Model – Navier-Stokes-Fourier Equations 
The traditional hydrodynamic quantities of density, ρ, velocity, ui, and temperature, T, correspond to the 
first five lowest-order moments of the molecular distribution function. The governing equations of these 
hydrodynamic quantities for a dilute gas can be obtained from the Boltzmann equation and represent mass, 
momentum, and energy conservation laws, as expressed in equations (11)-(13). The classical way to close 
this set of equations is through a CE expansion of the molecular distribution function in terms of Kn  
around the Maxwellian, which is first order in Hermite polynomials. The zeroth-order CE expansion 
yields the Euler equations and the first-order approximation of σij and qi, for Maxwell molecules, gives 
[10, 27]: 

 152   and  
4

NSF NSFi
ij i

j i

u Tq R
x x

σ μ μ<

>

∂ ∂
= − = −

∂ ∂
, (15) 

in which μ is the viscosity. Equation (15) expresses an import transport mechanism for ui and T: the 
gradient transport mechanism in continuum mechanics. If we let 
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    and   NSF NSF
ij ij i iq qσ σ= =  (16) 

and inserting equations (15) and (16) into equations (12) and (13) results in the traditional hydrodynamic 
equations, i.e. the Navier-Stokes-Fourier equations. The second order CE expansion adds the higher 
derivatives of the hydrodynamic variables to σij  and  qi and results in the Burnett equations. 

2.2 Second Moment Closure – Regularised 13 Moment Equations 
As the value of Kn increases, more moments need to be included in the GMM to accurately describe any 
non-equilibrium phenomena. Grad [11] truncated the distribution function to the incomplete third order in 
Hermite polynomials,  fG13,  as: 

 

 
2

13
1 11 1 .
2 5

ij
G M i j i i

cf f c c c q
pRT pRT RT
σ⎧ ⎫⎛ ⎞⎪ ⎪= + − −⎜ ⎟⎨ ⎬

⎪ ⎪⎝ ⎠⎩ ⎭
 (17) 

Grad was one of the pioneers to introduce σij and qi as extended hydrodynamic variables and derived a set 
of governing equations for them from the Boltzmann equation. For Maxwell molecules, the stress and heat 
flux equations are [27]: 

 42 2
5

iij k ij ijk ji
ij k i

k k j j k

qu m uup p
t x x x x x
σ σ

σ σ
μ

< ><
<

> >

∂∂ ∂ ∂ ∂∂
+ + = − − − −

∂ ∂ ∂ ∂ ∂ ∂
, (18) 

 

71 2 5
2 3 2 2

2 7 1 .
5 2 6

j i ij ij jki ik ik
i

j j i k k j k

ji k k
k k i ijk

k i k i k

u q Rq Rp T T pq pR RT
t x x x x x x x

uu u uq q q m
x x x x x

σ σσ σ
μ ρ

⎛ ⎞∂ ∂ ∂∂ ∂∂ ∂ ∂
+ + = − − − − + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∂⎛ ⎞∂ ∂ ∂ ∂Δ
− + + − −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (19) 

If only the underlined terms in equations (18) and (19) are retained and the rest of terms are set to zero, the 
NSF equations are recovered. Here, mijk, Rij and Δ represent the difference between the true value of the 
higher moments (ρ<ijk>, ρ<ij>rr, and ρrrss) and their approximated value with fG13, respectively [13], i.e. 

 
13

13

13

|

|

|

,  

7 ,

15 .

G

G

G

ijk ijk ijk f ijk

ij ij rr ij rr f ij rr ij

rrss rrss f rrss

m

R RT

pRT

ρ ρ ρ

ρ ρ ρ σ

ρ ρ ρ

< > < > < >

< > < > < >

= − =

= − = −

Δ = − = −

 (20) 

In Grad’s original method, such deviations were omitted, so that 13 13 13 0G G G
ijk ijm R= = Δ = . This results in 

the well known G13 equations. To close the set of equations (11)–(13), (18) and (19), Struchtrup & 
Torrilhon regularised the G13 equations and obtained the following closures [13, 27]:   

 13 42 ,
5

ij ij j ijR k l
ijk ij i

k k k k l

uRT pm RT q
p x x x x x

σ σ σ σμ σ
ρ ρ

< < < >
< <

> > > >

∂ ∂⎛ ⎞∂∂ ∂
= − + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

 (21) 
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13 24 52
5 6

5 2 4 ,
7 3 7

j k ijR i i k k
ij i kl

j j j k k l

j k i j kk k
k i k i ij

k j k

q q q uRT pR RT q
p x x x x x x

u u uRT
x x x

σ σμ σ
ρ ρ

σ σ
σ σ σ

ρ

>< <
<

> > >

> < >
< <

>

⎡ ⎛ ⎞∂ ⎛ ⎞∂ ∂ ∂∂ ∂
= − + − + − +⎢ ⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠⎝ ⎠⎣

⎤⎛ ⎞∂ ∂ ∂
+ + − −⎥⎜ ⎟⎜ ⎟∂ ∂ ∂ ⎥⎝ ⎠⎦

 (22) 

 13 712
2

j jk ij ijR k i
k ij

k j k k j

q q uRT pq RT
p x x x x x

σ σ σμ σ
ρ ρ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂∂ ∂
Δ = − − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

. (23) 

If we let  

 13 13 13,     and   R R R
ijk ijk ij ijm m R R= = Δ = Δ  (24) 

and inserting equations (21)–(24) into equations (18) and (19), we obtain a set of closed 13 moment 
equations which is denoted as the R13 equations [13].  

2.3 Higher Order Moment Closure – Regularised 26 Moment Equations 
One of the challenges for macroscopic models in microflows is to capture the Knudsen layer [4]. The R13 
equations improved Grad’s original closure significantly, but they were not able to capture the Knudsen 
layer velocity profile accurately [21]. Since equations (21) and (22) are algebraic approximations for mijk 
and Rij, they can only provide a mechanism to produce a boundary layer for the lower order moments, σij  
and qi, but have no mechanism to produce their own boundary layer near the wall. As the Knudsen layer is 
a linear superposition of many exponential layers in planar [29], the R13 equations only resolve one such 
contribution [21]. To increase the capability of the moment method, the distribution function is truncated 
to the incomplete fourth order in Hermite polynomials as [14]: 

 
( )

( )

2 2

26 2 2

4 2

2

1 1 1
2 5 76 ( ) 4

2 1 ,
8 315

ij i j ijk i j k ij i ji i
G M

c c m c c c R c cc q c cf f
pRT pRT RT RTp RT p RT

c c
pRT RTRT

σ⎧ ⎡ ⎛ ⎞ ⎛ ⎞⎪= + + − + + −⎢ ⎜ ⎟ ⎜ ⎟⎨
⎢ ⎝ ⎠ ⎝ ⎠⎪ ⎣⎩

⎫⎛ ⎞Δ ⎪⎜ ⎟+ − + ⎬⎜ ⎟⎪⎝ ⎠⎭

 (25) 

and the moments mijk, Rij and Δ are included in the GMM as extended hydrodynamic variables. As a result, 
a set of 26 moment equations can be derived from the Boltzmann equation [14]: 

 3 43 ,
2 5

ijk l ijk ijkl ij ij j ij k l
ijk ij i

l l k k k k l

m u m up RT pm RT q
t x x x x x x x

φ σ σ σ σ
σ

μ ρ ρ
< < < >

< <
> > > >

∂ ∂ ∂ ∂ ∂⎛ ⎞∂∂ ∂
+ + = − − + − + −⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

(26) 
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> >
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> >

⎡ ⎛ ⎞∂ ∂ ∂ ∂ ⎛ ⎞∂ ∂ ∂∂
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 (27) 
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 2 7 28 .
3 2 3

j jk ij iji i k i
k ij

i i k j k k j

q RTu q up RT pq RT
t x x x x x x x

σ σ σ
σ

μ ρ μ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂∂Δ ∂Ω ∂ ∂∂Δ ∂ ∂
+ + = − Δ − − + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

(28) 

Here, φijkl, ψijk  and Ωi are the difference between the true value of the higher moments (ρ<ijkl>, ρ<ijk>rr, and 
ρrrssi) and their corresponding value approximated with fG26, i.e. 

 
26

26

26

|

|

|

,  

9 , 

28 .

G

G

G

ijkl ijkl ijkl f ijkl

ijk rr ijk rr ijk f rr ijk ijk

i rrssi rrssi f rrssi i

RTm

RTq

φ ρ ρ ρ

ψ ρ ρ ρ

ρ ρ ρ

< > < > < >

< > < > < >

= − =

= − = −

Ω = − = −

 (29) 

Following the same regularisation procedure for the 13 moment equations, the following closures for 
equations (26)-(28) can be readily obtained by [14]:   

 ( ) 2

1 1

4 ln 3 7
7

ijk ij klk
ijkl ijk ij ij

l l l

m u Zm RT R
Z x x RT x Z

σ σμ ρφ σ
ρ ρ

< < >
< < <

> > >

∂⎛ ⎞∂∂
= − − + + −⎜ ⎟∂ ∂ ∂⎝ ⎠

, (30) 

 1

32

1 1

727 ln 28 
7 5

,

ij ij ij j
ijk ij i

k k k k

li jkl i jk

R R RT uRTR q
Y x x RT x x

m qYY
Y Y

σμ ρ
ψ

ρ

σ σ
ρ ρ

< < <
< <

> > > >

< > < >

∂ + ∂⎛ ⎞∂ ∂
= − − + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞

− +⎜ ⎟
⎝ ⎠

 (31) 

 

7 7 ln ln 56 4 4
3 3 5

2 5 1414 214 ,
3 15

ij ji
i ij j j

i i j j j i

ij ij ijk jk j ij

j i

R uuR q q
x x x x x x

RT R m qRT RT
RT x RT x

μ ρ ρ
ρ

σ σ σ
ρ

⎡ ⎛ ⎞∂ ∂∂∂Δ ∂ ∂
Ω = − − Δ + − + +⎢ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎝ ⎠⎣

⎤+ +⎛ ⎞∂ Δ ∂
+ + −⎥ ⎜ ⎟∂ ∂ ⎥ ⎝ ⎠⎦

 (32) 

in which Z1=2.097, Z2=0.291, Y1=1.698, Y2=1.203 and Y3=0.854 are collision term constants for Maxwell 
molecules [14, 30]. Following the convention of Struchtrup [27], the above closed set of 26 moment 
equations are denoted as the R26 equations. In the right hand side of the governing equations (26)–(28) for 
the moments mijk, Rij and Δ, only the terms involved in the R13 closure are retained. Some higher order 
terms in the constitutive relationships (30)–(32), which have negligible effects for flows in MEMS, are 
neglected. The full list of equations and their closures can be found in Ref. [14].    

4.0 WALL BOUNDARY CONDITIONS 

To apply any of the foregoing models to flows in confined geometries, appropriate wall boundary 
conditions are required to determine a unique solution. One of the difficulties encountered in any 
investigation of wall boundary conditions is due to a limited understanding of the structure of surface 
layers of solid bodies and of the effective interaction potential of the gas molecules with the wall. A 
scattering kernel represents a fundamental concept in gas-surface interactions, by means of which other 
quantities should be defined [2]. For the moment equations, the boundary conditions for the relevant 
macroscopic variables are required in addition to the traditional velocity slip and temperature jump 
conditions. As we can derive the macroscopic governing equations from kinetic theory, the macroscopic 
boundary conditions can also be constructed from kinetic theory. Gu & Emerson [14, 15] obtained a set of 
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wall boundary conditions for the R13 moment equations based on Maxwell’s kinetic wall boundary model 
[31] and a fourth-order approximation of the molecular distribution function in Hermite polynomials. To 
construct wall boundary conditions for the R26 equations, a fifth order approximation of the molecular 
distribution function,  f (5) , is required, which can be expressed as [14]:  

 
( ) ( ) ( ) ( )

2 4 2
(5)

26 3 3 2 2
21 5

924 12 40 7
ijkl i j k l ijk i j k i i

G M
c c c c c c c cc c cf f f

RT RTp RT p RT p RT RT

φ ψ⎡ ⎤⎛ ⎞⎛ ⎞ Ω⎢ ⎥⎜ ⎟= + + − + − +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (33) 

It should be noted that the higher moments involved in the underlined terms in equation (33) arise from 
the regularisation procedure.  

Maxwell's kinetic boundary condition [31] is one of the simplest models and it states that a fraction, α, 
will be diffusely reflected with a Maxwellian distribution, w

Mf , at the temperature of the wall, ,wT  while the 
remaining fraction (1-α), of gas molecules will undergo specular reflection. In a frame where the 
coordinates are attached to the wall, with ni the normal vector of the wall pointing towards the gas and τi 
the tangential vector of the wall, such that all molecules with ξini < 0 are incident upon the wall and 
molecules with ξini ≥ 0 are emitted by the wall, Maxwell’s boundary condition can be expressed by [27]: 

 ( )1 ( ), 0,
          ( ),           0.

w
w M i i i i

i i i i

f f n n
f

f n n
α α ξ ξ

ξ ξ
⎧ + − − ≥⎪= ⎨

<⎪⎩
 (34) 

By definition, the value of any moment at the wall can be obtained from 

 ( )1 2 1 20 0
( ) 1 ( )

n ni i i i
w

i i i i i i i i M i in nc c c f n d c c c f f n dξ ξξ α α ξ
≥ ≥

⎡ ⎤= + − −∫ ∫ ⎣ ⎦L Lξ ξ . (35) 

From the analysis of the special case of α = 0, it was found that only moments that are odd functions of 
cini can be used to construct wall boundary conditions [11]. Furthermore, only those moments representing 
fluxes can be used in the boundary conditions [16].  From equation (35), the slip velocity parallel to the 
wall, uτ, and temperature jump conditions can be obtained as [14, 15]:  

 5 2 9 702
2 10 2520

n nn nnm qRTu
p p p RT
τ τ τ τ τ

τ
α α α

σ ψα π
α

+ Ω +−
= − − + , (36) 

 
2 75 282

2 2 4 4 840 24
n nn nn nnnn

w
q RT u RRTRT RT
p p p p

τ

α α α α

σ φα π
α

+ Δ−
− = − − + − +  (37) 

where 

 30 7 .
2 840 24
nn nn nnnnRp p

RT RTα
σ φ+ Δ

= + − −  (38) 

Here σnn = σijninj, σnτ = σijniτj, qτ  = qiτi, qn  = qini, mnnτ = mijkninjτk, mnnn = mijkninjnk, Rnn = Rijninj, Ωτ = Ωiτi, 
ψnnτ = ψijkninjτk, and φnnnn = φijklninjnknl  are the tangential and normal components of σij, qi, mijk, Rij, ψijk, Ωi 
and φijkl  relative to the wall, respectively. It should be noted that the normal velocity at the wall, un = 0, 
since there is no gas flow through the wall. Equations (36) and (37) are similar to the slip velocity and 
temperature jump conditions for the NSF equations [5, 6] with the underlined terms on the right hand side 
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providing higher-order moment corrections. These underlined terms can be related to second- or higher-
order velocity slip and temperature jump boundary conditions. The slip velocity in the higher moment 
system is not only proportional to the shear stress, σnτ, but also to the tangential heat flux, qτ, and other 
higher moments. With a normalised slip velocity, ˆ ,u u RTτ τ=  and a normalised wall temperature, 
ˆ ,w wT T T=  the rest of the wall boundary conditions are [14]: 

 ( )25 22 ˆˆ 1 ,
2 5 14 30 2

n n nn nn
w

m q R RRT p u T
RT RT RT RT

ττ ττ ττ
ττ α τ

φα πσ
α

+ +− Δ⎛ ⎞= − + + − − − −⎜ ⎟
⎝ ⎠

 (39) 

 ( )5 62 ˆ 1 ,
2 10 7 30 6

nnn n nn nnnn
nn w

m q RRT p T
RT RT RT RTα

φα πσ
α

+− Δ⎛ ⎞= − + − − − −⎜ ⎟
⎝ ⎠

 (40) 
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+ Ω− ⎛ ⎞= − + − − − −⎜ ⎟
⎝ ⎠

 (41) 
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−

 (42) 
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, (43) 
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 (45)  

 

4
2 2ˆ35 2 5 15ˆ ˆˆ6 6 3
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15 35 .
8 48

n
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nn nnnn
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φ
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− +

 (46) 

5.0 LINEARISATION OF MOMENT EQUATIONS 

One of the main features for gas flow in MEMS is low Reynolds number, Re < 1 and low Mach number 
Ma < 1. In most cases, it is sufficient to apply a linearised moment equation set to flow in the micro-
system. For flows with small deviations from an equilibrium state given by ρo, To, (or, po) and ui,o, these 
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deviations can be represented by dimensionless variables ,  ,  ,  ,  ,  ,  ,  ,i ij i ijk ijT u q m Rρ σ Δ  

,   and ijkl ijk iφ ψ Ω in  

 

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( )
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3/ 2 3/ 2 2
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i i o
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x Lx t L RT t

ρ ρ ρ

σ ρ σ ρ ρ ρ

ρ φ ρ φ ψ ρ ψ ρ
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Δ = Δ = = Ω = Ω

= =

 (47) 

in which, L is a characteristic length of the microsystem. Inserting equations (47) into equations (11) to 
(13), (18)-(19) and (26)-(28) and keeping only the terms that are linear in the deviations, a set of linearised 
R26 moment equations (LR26) are obtained as [19]: 
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The linearised constitutive relationships are: 
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along with the linearised boundary conditions: 
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in which, 

 
2

o

o

RT
p

πμλ =  (69) 

is the mean free path. For flows in simply geometries, such as Couette and Poiseuille flows, the above 
linearised moment equations can be decoupled into three sets of equations related to (i) velocity, (ii) 
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temperature and (iii) the remaining equations. For example, for the one dimensional planar configuration, 
the coordinates are chosen such that the wall is parallel to the x direction and y is the direction 
perpendicular to the wall. The velocity in the x direction is u and the velocity in the other directions is zero. 
All derivatives in the x direction, except pressure gradient in Poiseuille flow, are zero everywhere and 
mass conservation is satisfied automatically. The equations involved in the velocity problem from the 
linearised R26 moment system (LR26) reduce to the following five moment system: 

 ,xyu p
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+ = −

∂ ∂ ∂
 (70) 
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with the associated wall boundary conditions (59), (63) and (65), and the following constitutive 
relationships: 

 
1 1

15 2 72 2 2,  and  4 .
7 35

xyy xy xy
xyyy xyy x

m R R
Z L y Y L y L y

λ λ λφ ψ
π π π

∂ ∂ ∂
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∂ ∂ ∂
 (75) 

6.0 NUMERICAL SOLUTION OF THE MOMENT EQUATIONS 
The moment method results in a set of partial differential governing equations of mixed first and second 
order. In most situations, there are no analytical solutions for this complex set of governing equations and 
a numerical procedure is therefore required.  However, in the moment equation system, the momentum 
and energy conservation equations are the first order partial differential equations, in which there is no 
explicit gradient transport mechanism. The inadequacy of the standard finite volume method for the 
governing equations without any gradient transport terms is well recognised [22], so that methods for 
dealing with hyperbolic problems are required. In the case of low-speed rarefied gas flow, such as those 
found in micro-devices, the flow is parabolic or elliptic. Using a hyperbolic flow solver to solve elliptic 
flows is inefficient and expensive.  In fact, the gradient transport mechanism of the low moments is 
embedded in the moments one order higher.  For example, the diffusion of ui is included in σij, and the 
diffusion of T is included in qi, as reflected by the underline terms on the right hand of equations (18) and 
(19). To restore the gradient transport mechanism back to the moment equation system, a primitive 
variable transformation was introduced by decomposing the moments into their gradient and non-gradient 
components. The resultant equations of the non-gradient components have the general convection–
diffusion form [14, 15]. Alternatively, the gradient transport mechanism can be introduced into the 
discritised moment equations in a collocated grid by a properly constructing the flux in the control volume 
face [26]. 
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For a two dimensional steady state flow, the momentum equation (12) can be written in Cartesian 
coordinates (x, y) as    

 xyxxUU VU p
x y x y x

σσρ ρ ∂∂∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂ ∂
, (76) 

 xy yyUV VV p
x y x y y

σ σρ ρ ∂ ∂∂ ∂ ∂
+ + + = −

∂ ∂ ∂ ∂ ∂
, (77) 

in which, U and V are the gas velocity in x and y direction, respectively.  In a collocated grid arrangement 
shown in Figure 3, all the variables are stored at the control volume centre P and its neighboring points 
WW W P E EE SS S N NN. A discrete approximation to equation (76) or (77), in which U or V is the 
primitive variable,  is achieved by integrating the equation over a macro-control volume surrounding the 
nodal point P, 
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⌠⌠ ⌠⌠⌠ ⌠
⎮ ⎮⎮⎮ ⎮⎮ ⌡⌡ ⌡ ⌡⌡ ⌡

 (78) 

where n, s, e and w refer to the location of the space average of any quantity prevailing over the faces of 
the control volume. Using the mean-value theorem, equation (78) can be written as: 
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 (79) 

 

Figure 3: Collocated grid arrangement. 

As suggested by the underline terms in the right hand side of equation (18), the stress in the momentum 
equation is proportional to the velocity gradient. In the discritised form in x direction, the normal stress on 
the nodal points, P, W and E should have 



Application of the Moment Method in the 
Slip and Transition Regime for Microfluidic Flows  

11 - 16 RTO-EN-AVT-194 

 ( ) ( ) ( ),    and  xx xx xxP W E
P W E

U U U
x x x

δ δ δσ μ σ μ σ μ
δ δ δ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∝ − ∝ − ∝ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. (80) 

The stress at the control volume faces, w and e should have the same property as: 
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To estimate the values of the stresses at the faces of the control volume, it is important to preserve this 
property. To guarantee this, it is convenient to interpolate the face value of the normal stress as: 

 
( ) ( ) ( )

( ) ( ) ( )

1 1 ,   
2 2

1 1 .
2 2

xx xx xxw W P
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E P e
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x x x
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δ δ δ

δ δ δσ σ σ μ μ μ
δ δ δ

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤= + + + −⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎣ ⎦
⎨

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎡ ⎤= + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩

 (82) 

Similar interpolation of the face value of the shear stress in the y direction can be obtained as 
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δ δ δ

⎧ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤= + + + −⎪ ⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎣ ⎦ ⎢ ⎥⎪ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦
⎨

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ ⎡ ⎤= + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ ⎣ ⎦ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎩

 (83) 

Inserting equations (82) and (83) into equation (79), the discritised momentum equation in the x direction 
can be expressed by 
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( ) ( )
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⎝ ⎠ ⎝ ⎠

⎧ ⎫⎡ ⎤⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − + − +⎨ ⎬⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

⎧ ⎫⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪− + − +⎢ ⎥ ⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (84) 

Equation (84) is a typical discritised convective and diffusion equation with source terms on the right hand 
side.  The same procedure can be performed to equations (77), (13), (18) and (19). Numerical methods for 
solving the convective and diffusion equations are well documented for both high and low speed flows 
[22]. For the convective terms, a range of upwind schemes including QUICK [32], SMART [33], and 
CUBISTA [34] are available in the literature. The diffusive and source terms are discretised by a central 
difference scheme and the CUBISTA scheme was selected for the present study. The coupling of the 
velocity and pressure fields is through the SIMPLE [35] or PISO [36] algorithm. For steady state flow, the 
system of equations can be solved iteratively and the solution procedure is summarised as follows: 

1) Solve  ui at iteration n+1 using the values of other variables at the previous iteration n. 

2) Solve the pressure correction equation using the SIMPLE or PISO algorithm to update p and ui at 
iteration n+1. 
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3) Solve T, σij, qi, mijk, Rij, Δ at iteration n+1 using updated pressure and velocity fields. 

4) Update the boundary conditions according to equations (36), (37) and (39)–(46). 

5) Return to step 1 and repeat until residuals of each governing equation reaches a specified 
convergence criterion. 

Computationally, it is more expensive to solve the R26 equations than the NSF equations but this cost is 
necessary to capture non-equilibrium phenomena. However, the advanced computational and numerical 
techniques developed over the years for conventional computational fluid dynamics can be readily adopted 
so that the moment method can be applied for engineering applications where non-equilibrium effects are 
important. In particular, in the low-speed, low Reynolds number regime where it can be costly and 
difficult to get meaningful statistical data from stochastic methods, the R26 equations have a significant 
computational advantage. 

7.0 VALIDATIONS AND APPLICATIONS 

As the macroscopic models are reduced from detailed kinetic theory, some kinetic information is lost 
during the reduction process. Two important features of solutions to the Boltzmann equation is that the 
distribution function, f, is non-negative and the solution must satisfy the H-theorem [6]. However, a 
solution obtained from the moment equations as an approximation to f may not satisfy these constraints. It 
is proved that the linearised R13 equations naturally fulfil the H-theorem [37]. For full R13 and R26 
moment equations, numerical analysis is required to assess the moment realizability and the H-theorem 
inequality [14]. From the engineering point of view, it is necessary to validate the macroscopic models 
against available kinetic data as much as possible. In this section, we will first use the linearised moment 
equations to obtain analytical solutions for Kramers’ problem and Poiseuille flow. Numerical techniques 
are then used to solve the moment equations for complicated flow configurations. The analytical and 
numerical solutions will be compared with kinetic data for the Boltzmann equation and DSMC data to 
demonstrate the capability as well as the limitation of the macroscopic modelling approach.   

7.1 Kramers’ Problem and Knudsen Layer 
The Knudsen layer is a boundary layer that bridges the wall effect and the bulk flow. Kramers’ problem 
[38], first formulated in 1949, is the most basic configuration, where the effect of a solid wall can be 
investigated without additional complications found in more realistic geometries. It has been extensively 
studied [39–43] and it provides a useful benchmark for the development of macroscopic models.  As a 
half-space problem, it can be readily solved by the linearised equations (70)–(75). The wall is set at 0y =  
and the shear stress, xyσ ,  is constant so there is no pressure gradient in the x direction. The mean free path, 
λ, is chosen as the characteristic length, L, so that λ/L=1. Integration of equation (71) gives the velocity 
profile as: 

 2
2 5xy x xyyu y q m Aπ σ= − − − + , (85) 

where A is an integration constant determined by the wall boundary conditions. The superposition of the 
velocity contributions from  ,  xy xqσ  and xyym  is clearly expressed by equation (85). This is an important 
feature that is not present in the NSF equations, in which 0xq =  and 0xyym = . The expressions for xq  
and xyym  can be obtained from equations (72)–(74) as:  
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 ( )1.212 2
1

2
2

y
xyy xym C e

ππ α σ
α

−−
= , (86) 

 ( )0.594 2
2

20.445
2

y
x xyq C e

πα π σ
α

−−
=  (87) 

where C1 and C2 are integration constants. In the above solutions, the boundary condition that as y →∞ , 
,xq  xyym and xyR  will remain finite has been used to remove the other two integration constants and the 

terms associated with them. The remaining integration constants, A, C1 and C2, are determined from the 
wall boundary conditions (59), (63) and (65) by 

 ( )
1 2

0.291 1.658
0.101 1.128 9.0

C
α α

α α
+

= −
+ +

, (88) 

 ( )
2 2

0.639 3.592
0.101 1.128 9.0

C
α α

α α
−

=
+ +

, (89) 

 ( )1 2
2 1 0.5 0.117

2 xyA C Cα π σ
α
−

= − − − . (90) 

Inserting equations (86)–(90) into equation (85), the final expression for velocity from the LR26 moment 
equations reads 

 ( ) ( )1.212 2 0.594 2
1 2 1 2

2 0.178 0.5 0.117 1
2

y y
xyu y C e C e C C

π ππ ασ
α

− −⎡ ⎤− ⎛ ⎞= − + + − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (91) 

In the linearised R13 system (LR13), the governing differential equations (73) and (74) are replaced by the 
following constitutive relationships [44]:  

 16 2 12 2  and  
15 5

xy x
xyy xy

qm R
L y L dy

σλ λ
π π
∂ ∂

= − = −
∂ ∂

, (92) 

along with the boundary conditions (59) and (63) without the higher moments, xyyψ  and xΩ . For 
Kramers’ problem, it is interesting to see that 0xyym =  in the LR13 model.  The velocity field for the 
LR13 equations is readily obtained as  

 
( )
( )

( )

( )
5 1813 2 10 4 102

2 12 2 10 4 10 6 10 2 10

y

xy
eu y

ππ α ππ α ασ
α π α π π α π

−⎡ ⎤⎛ ⎞− +−⎢ ⎥⎜ ⎟= − + −
⎢ ⎥⎜ ⎟− + − +⎢ ⎥⎝ ⎠⎣ ⎦

. (93) 

If we compare equations (91) and (93), we can see that the LR26 equations provide two exponentials to 
describe the Knudsen layer whilst the LR13 equations only contain one exponential. 

In kinetic theory, the defect velocity and slip coefficient are often used to study how the wall affects the 
velocity profile [39–43]. To be consistent with the kinetic solutions obtained from the Boltzmann 
equation, a reference velocity defined by 



Application of the Moment Method in the 
Slip and Transition Regime for Microfluidic Flows 

RTO-EN-AVT-194 11 - 19 

 
2

o
o xy xy
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= − = −  (94) 

is used to scale the velocity i.e.  
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 (95) 

A defect velocity, ,du is defined by [40, 43] 

 du y uζ= + − %  (96) 

and the slip coefficient, ,ζ is determined by 

 lim 0.dy
u

→∞
=  (97) 

From the above condition, the expression of ζ  for the LR26 moment equations can be written as  

 ( )1 2
2 1 0.5 0.117C Cαζ
α
−

= − −  (98) 

and the defect velocity is expressed by  

 ( )1.212 2 0.594 2
1 2

2 0.178y y
du C e C eπ πα

α
− −−

= − + . (99) 

Similarly, we can obtain the defect velocity and slip coefficient for the LR13 equations, respectively, as  
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⎡ ⎤− +− ⎢ ⎥=
⎢ ⎥− +⎣ ⎦

, (100) 

 
( )

5 182 .
6 10 2 10

y

d
eu
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 (101) 

Figure 4 presents the analytical solutions of the defect velocity in the Knudsen layer from the moment 
equations in comparison with the computational results from the three kinetic models investigated by 
Siewert [43], i.e. the BGK model, the Williams model (the collision frequency is proportional to the 
magnitude of the velocity), and the hard sphere model. For the case of 0.9,α =  diffusive reflection from 
the wall dominates. The BGK kinetic model produces the largest defect velocity in the Knudsen layer, 
particularly close to the wall ( 0.5y < ). In contrast, the results from the Williams and hard sphere models 
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are in close agreement with each other. The analytical solution from the LR26 equations generally lies 
between the three models and, beyond 0.5,y =  is in close agreement with the BGK model. However, at 
the wall, all kinetic models predict a higher defect velocity. Conversely, the solution obtained from the 
LR13 equations underpredicts the defect velocity significantly, as shown in Figure 4(a). As the LR13 
system involves fewer equations and boundary conditions than the LR26 system, less kinetic information 
is preserved in the LR13 model. Clearly the combination of two exponentials with different widths 
produces an improved Knudsen layer velocity profile. It is expected that more moments and their 
governing equations would generate more exponentials with different widths to recover the full kinetic 
information. As the value of the accommodation coefficient decreases, the previous observations remain 
valid although, as expected, the defect velocity increases, as shown in Figure 4(b). In this case, where 

0.1α = , specular wall reflection dominates. The results shown in Figure 4 illustrate that the LR26 
equations work well for walls exhibiting either diffusive or specular reflection.  
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Figure 4: Defect velocity profile for Kramers’ problem: comparison between the moment equation  
solutions (lines) and kinetic theory (symbols) [43]. (Note: The original data in Ref [43] are  

presented in terms of the mean free path defined by ( )2 .l π λ= . The data were  

converted to be consistent with the present definition of the mean free path, λ.).  

Equation (85) illustrates that the velocity in the Knudsen layer consists of contributions from ,xyσ  xq , and 
.xyym  For the LR13 equations, 0,xyym =  there is no mechanism for xyym  to contribute; so the Knudsen 

layer is derived solely from the tangential heat flux, .xq  In the NSF system, xq  and xyym  are not present, 
so there is no Knudsen layer. If we take the distance to the wall as the characteristic length, the 
corresponding Knudsen number is the reciprocal of .y  Figure 4 suggests that the LR26 and LR13 
equations can capture the Knudsen layer velocity in a half space configuration for a Knudsen number 
equal to 2 ( )0.5y = and 0.5 ( )2y = , respectively. However, in confined geometries, Knudsen layers from 
opposite walls will overlap [14] and, for the R26 and R13 equations, this will reduce the value of the 
Knudsen number to 1 and 0.25, respectively. These results provide a clear indication that the higher 
moment equations can be used in the early transition regime with good accuracy to account for the wall 
effect on flows in MEMS.  
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7.2 Planar Poiseuille Flow and Knudsen Minimum  
Channels are the most frequently encountered geometry in MEMS. Planar Poiseuille flow driven by a 
small pressure gradient is another classic case often used to check the validity of any proposed 
macroscopic models.  The distance between the plates is chosen as the characteristic length, L, so that the 
Knudsen number, 

 Kn
L
λ

= . (102) 

The two plates have been set at 2y L= ± , i.e., 1 2y = ± .  Symmetry boundary conditions are applied at 
0,y =  and the flow is driven by a constant pressure gradient 

 p
x

ξ∂
= −

∂
. (103) 

From equation (70), the shear stress can be expressed by 

 xy yσ ξ= . (104) 

Integration of equation (71) gives: 

 2 2
2 2 5xyy xu y m q B

Kn
π ξ

= − − − + , (105) 

in which B is an integration constant. Again, it is clearly shown from equation (105) that the velocity 
profile in the confined geometry has contributions from not only σxy, but also from mxyy and qx, which can 
be obtained from equations (72)-(74) as: 

 3
1.212 216 2 cosh

15xyym Kn C y
Kn

π
ξ ξ

π

⎛ ⎞
= − + ⎜ ⎟⎜ ⎟

⎝ ⎠
, (106) 

 4
23 2 cosh 0.594

2xq Kn C y
Kn
π

ξ ξ
π

⎛ ⎞
= − + ⎜ ⎟⎜ ⎟

⎝ ⎠
 (107) 

where C3 and C4 are the integration constants, along with B, are determined by the boundary conditions 
(59), (63) and (65) as: 

 3
4
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8 2 6 2 2 2
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π α
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 (108) 

 2 3 3 2 1 3 1 3
3 4

1 2 1 2 1 2 1 2

  and  E F E F E F F EC C
E F F E E F F E

− −
= = −

− −
 (109) 

with 
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 (110) 

Substituting equations (106)-(108) into equation (105), the velocity profile of planar Poiseuille flow is 
obtained as 
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 (111) 

In order to compare with the linearized Boltzmann solution [7, 45], a reference velocity, 

 2o ou RTξ=  (112) 

is used to renormalize the velocity as   
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 (113) 

The normalised mass flow rate of planar Poiseuille flow, Q, can be obtained by the integration of equation 
(113) over the channel width as 
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 (114) 

Similarly, we can obtain the velocity profiles from the LR13 equations as 
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in which the constant C5 is determined from the boundary conditions as: 

 5

22 3 56
5
24 2 10 1010 sinh 6 cosh
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απ
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α π ππ π
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. (116) 

The normalised flow rate obtained from the  LR13 equations is: 

 55 2 10 12 10 10cosh sinh
24 2 3 2 12 5 125 2

CKnQ Kn
Kn Kn Kn
π π α π π

π α π

⎡ ⎤⎛ ⎞ ⎛ ⎞−⎛ ⎞= + + + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
. (117) 

The velocity profiles calculated from equations (113) and (115) from the LR26 and LR13 moment 
equations, respectively, are presented in Figure 5 at a range of Knudsen numbers in comparison with the 
solution from the linearised Boltzmann equation [7]. At  Kn=0.113, which is just beyond the slip-flow 
regime, both extended hydrodynamic models predict similar values of velocity and are all close to the 
solution obtained from the Boltzmann equation, as shown in Figure 5(a). The LR13 equations 
underpredict while the R26 equations slightly overpredict the maximum velocity. However, as the value of 
Kn increases and the flow enters the transition regime, the LR13 equations overpredict the slip velocity 
significantly. In contrast, the velocity fields predicted by the LR26 equations compare very well to the 
solution obtained from the Boltzmann equation for both Kn=0.226 and 0.451, as shown in Figures 5(b) 
and (c). The velocity-slip predicted by the LR26 equations is in reasonable agreement with the value 
predicted by the Boltzmann equation but discrepancies in the bulk flow begin to show at Kn=0.903, Figure 
5(e), and differ at Kn=1.128, as shown in Figure 5(f). 
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Figure 5: Comparison of velocity profiles of pressure-driven Poiseuille flow at different  
values of Knudsen number between the linearized moment equation  

solution and the linearised Boltzmann equation solution [7].  

The accurate prediction of the flow rate in a micro-channel is important in the design of micro-devices. To 
get the flow rate correct, it is essential that the predicted velocity profile is correct. In contrast, the correct 
prediction of the flow rate cannot guarantee the correct velocity profile. Figure 6 shows the predicted mass 
flow rates by the LR13 and LR26 equations in comparison to the solution obtained from the Boltzmann 
equation [7, 44] at two different accommodation coefficients. When Kn < 0.1 in the slip regime, the flow 
rates predicted by both models are close to the solution obtained from the Boltzmann equation. As the 
value of Kn increases, non-equilibrium effects gradually enter the central flow region, the LR26 equations 
follow the solution obtained from the Boltzmann equation reasonably well until Kn  reaches about 1.5. As 
shown in Figure 6, the LR26 equations predict a Knudsen minimum at the value of Kn predicted by the 
Boltzmann equation for both α = 0.7 and 1.0. The R13 equations are close to the Boltzmann solution up to 
Kn ≈ 0.4, particularly for the lower value of α. They can also predict a Knudsen minimum but at a value of 
Kn smaller than that observed by the Boltzmann equation.  
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Figure 6: Comparison of mass flow rate of pressure-driven Poiseuille flow at different  
values of Knudsen number between the linearized moment equation  

solution and the linearised Boltzmann equation solution [7, 44].  

One of the interesting effects of rarefaction in Poiseuille flow revealed by kinetic theory is the presence of 
heat flow in a channel without any temperature gradient [7]. This phenomenon is also captured by the 
LR26 moment equations. The tangential heat flux is caused by the pressure gradient and the Knudsen 
layer contribution as expressed by the first and second terms in the right-hand side of equation (107), 
respectively. When the Knudsen number is small, heat flows in the opposite direction to the mass flow at 
the centre of the channel but, close to the wall, it is in the same direction as the mass flow, as indicated in 
Figure 7. However, as the Knudsen number increases, heat flow is always in the opposite direction to the 
mass flow. This is a high-order rarefaction effect which is clearly not embedded in the NSF equations. 
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Figure 7: Tangential heat flux of pressure-driven Poiseuille flow at different values of Kn  
with fully diffusive walls. Lines: the LR26, Symbols: the linearised Boltzmann equation  

[7]. xq% is the normalised tangential heat flux by ( )2 2x x o xq q p RT q= =% .  

7.3 Stokes’ Second Problem and Oscillatory Planar Couette Flow 
Many MEMS devices contain oscillating parts where air (viscous) damping plays an important role. To 
understand the damping mechanisms, it is essential to consider non-equilibrium or rarefaction effects. In 
oscillatory flows, additional non-equilibrium effects can arise if there are an insufficient number of 
intermolecular collisions during one cycle of the oscillation. To quantify the extent of rarefaction in this 
respect, Sharipov and Kalempa [45, 46] introduced a rarefaction parameter, θ, as 

 ,ηθ
ω

=  (118) 

in which ω and η  are the oscillation and the intermolecular collision frequency, respectively. By analogy 
with the spatial Knudsen number, Kn, which is based upon a typical length scale, it is convenient to adopt 
a temporal Knudsen number, Knt, which is defined as the reciprocal of θ, to express the extent of non-
equilibrium from the aspect of time scale [47], i.e. 

 1
tKn ω

θ η
= = . (119) 

The intermolecular collision frequency, η, can be estimated by p/μ [6]. When Knt << 1, many 
intermolecular collisions occur during one cycle of the oscillation so that unsteadiness has little effect on 
the flow to approach the equilibrium state. On the other hand, in the regime where  Knt >> 1, very few 
intermolecular collisions occur during one cycle of the oscillation. The intermolecular collisions can be 
neglected and the free molecular formulation of the Boltzmann equation can be used. In a system where 
Knt ∼ 1,  the number of the intermolecular collisions is not sufficiently large for the flow to reach an 
equilibrium state during one oscillation cycle. Rarefaction effects have to be taken into account when 
modeling flows in this regime.  
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Analytical solutions of the Navier-Stokes equation for Stokes’ second problem and oscillatory planar 
Couette flow, with either first-order or second-order velocity-slip boundary conditions, can be found in the 
works of Sharipov and Kalempa [45, 46], Park et al. [48] and Hadjiconstantinou [49]. Emerson et al. [50] 
studied nonplanar oscillatory Couette flow in the entire range of Knudsen number. The analytical solutions 
for the LR13 and LR26 moment equations can also be obtained; they are a linear combination of 4 and 6 
exponentials with different widths for the LR13 and LR26 equations, respectively. However, the 
expressions for the coefficients and the widths are rather complicated and cumbersome. It is therefore 
more convenient to solve the one dimensional LR13 and LR26 equations numerically [47]. Equations (70)
–(74) can readily be solved using a central difference scheme to discretize the spatial derivatives and a 
second-order Crank-Nicholson method for the temporal terms. 

Stokes’ second problem is a half space configuration with the oscillating wall located at y = 0. The mean 
free path, λ, is chosen as the characteristic length so that λ/L in equations (70) – (75) is equal to 1. The gas 
molecules are assumed to diffusively reflect from the oscillating wall and the gradients of all variables are 
equal to zero at the open end of the solution domain. To solve the system of equations, 200 to 400 equi-
spaced grid points are used depending on the oscillation frequency. For oscillatory planar Couette flow, 
the lower plate is located at y = 0 and remains stationary.  The upper plate, (y = L), oscillates at a fixed 
frequency. The gap between the two plates, L, is chosen as the characteristic length scale, so that λ/L in 
equations (70) – (75) is equal to Kn. The flow is solved with 200 grid points across the one-dimensional 
domain. For both configurations, the moving wall oscillates sinusoidally according to  

 sin( ),o wu u tω=  (120) 

where ω and uw are the oscillating frequency and magnitude of the wall, respectively, and uo is the 
instantaneous wall velocity. The numerical time interval is taken as one hundredth of a period. The 
accommodation coefficients of the lower and upper walls are assigned a value of unity. All computations 
are impulsively started with zero velocity everywhere and 50 to 100 periods are computed to remove the 
quiescent initial effects and to ensure that a quasi-steady periodic state is reached. Computed results for 
the macroscopic models are then compared with data from kinetic theory to assess their validity.  

7.3.1 Stokes’ Second Problem 

The dynamic velocity profiles from the linearised moment equations at four points in time, corresponding 
to ωt = 0, π/2, π, 3π/2, are presented in Figure 8. At the lower value of Knt equal to 0.1, where many 
intermolecular collisions occur during one cycle of oscillation, the results from both extended continuum 
models are nearly identical, as shown in Figure 8(a). Analogous to the classification for steady flow, we 
can denote the regime of  Knt < 0.1 as the hydrodynamic regime. As Knt increases to 0.5, in Figure 8(b), 
the solutions from the LR13 and LR26 equations start to deviate from each other. At Knt equal to unity, 
well into the transition regime, the velocity profiles from the LR13 equations are significantly different 
from those of the LR26 equations not only in the region close to the wall but also in the bulk flow, as 
indicated in Figure 8(c). The LR13 equations predict a larger slip velocity than the LR26 equations which 
is due to the LR13 equations lacking a proper mechanism to capture the Knudsen layer velocity profile 
near the wall [21] and the oscillation aggravates the situation. In general, the slip velocity increases as tKn  
increases so that the velocity on the wall reduces.  
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Figure 8: Dynamic velocity profiles of Stokes’ second problem from the extended  
hydrodynamic models at four different times. Adapted from Ref. [47]. 

The predicted values of the velocity amplitude at the wall from each of the hydrodynamic models are 
plotted against Knt in Figure 9(a) and compared to the kinetic data from the linearised BGK model [45]. 
The Navier-Stokes equations always under-predict the velocity amplitude on the wall even in the 
hydrodynamic region. Both extended macroscopic models improve the prediction of um on the wall 
significantly, as shown in Figure 9(a), up to Knt = 0.5 with the LR26 equations showing better agreement 
than the LR13 equations.  

10-3 10-2 10-1 100 101

Knt

0.0

0.25

0.5

0.75

1.0

u m
/u

w

NS
LR13
LR26
BGK

(a)

10-3 10-2 10-1 100 101

Kn

0.0

0.1

0.2

0.3

0.4

m

NS
LR13
LR26
BGK

(b)

 

Figure 9: Predicted velocity and shear stress amplitudes on the wall of Stokes’ 
 second problem from macroscopic models in comparison with 

the data from the linearised BGK kinetic equation [45].  

To compare with kinetic data [45], the shear stress, σxy, is renormalised as 

 
2

2
xy o

o w

RT
p u

σ
Π =  (121) 

The predicted value of the shear stress amplitude on the wall, Πm, from the hydrodynamic models and 
kinetic theory are presented in Figure 9(b). In the hydrodynamic regime, where Knt < 0.05, all the 
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hydrodynamic models predict similar values of Πm on the wall and are in good agreement with kinetic 
theory. When Πm is exceeds 0.1, the NS equations start to underestimate Πm, while both the LR13 and 
LR26 equations are still able to follow the kinetic data. The LR13 equations tend to overpredict mΠ  when 
Knt  > 0.5.  

The corresponding velocity and shear stress phases on the wall, ϕu and ϕP, as defined by Sharipov and 
Kalempa [45], are presented in Figure 10. The velocity phase, ϕu, has a maximum value in the transition 
regime as shown in Figure 10(a). The NS and LR13 equations fail to predict any maximum value. In 
contrast, the LR26 equations predict a maximum value of ϕu, but the value is larger than that from kinetic 
theory. In general, the agreements of ϕu between the hydrodynamic models and kinetic theory are not 
satisfactory in the slip and transition regimes, although the LR26 model improves the prediction 
substantially. However, it should be pointed out that the maximum value of ϕu on the wall is less than 4% 
of one period. Conversely, all extended hydrodynamic models predict the shear stress phase, ϕP, very well 
up to Knt = 1, as illustrated in Figure 10(b). The NS equations underestimate the value of ϕP, from a very 
low value of Knt. 
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Figure 10: Predicted velocity and shear stress phases on the wall of Stokes’  
second problem from macroscopic models in comparison with the data  
from the linearised BGK kinetic equation [45]. Adapted from Ref. [47]. 

7.3.2 Oscillatory Planar Couette Flow 

For oscillatory planar Couette flow under rarefied conditions, non-equilibrium effects will arise from both 
the separation distance and the oscillation of the walls. Therefore, both Knudsen numbers, Kn and Knt, 
defined upon a length and time scale, respectively, are required to measure the extent of non-equilibrium. 
Traditionally, the Stokes number, S, defined by  

 
2

o LS ρ ω
μ

= , (122) 

is often used to characterize the balance between the unsteady and viscous effects [48, 49]. To reflect non-
equilibrium effects due to the oscillation, the temporal Knudsen number, Knt, needs to be assessed to 
measure the oscillatory effect on the flow, which is related to Kn and S through 
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 ( )22 .tKn SKn
π

=  (123) 

Equation (123) indicates that Knt is proportional to the square of the product of Kn and S. Increasing either 
Kn or S can lead to a significant increase in the value of Knt. 

Figure 11 shows the velocity amplitude, um, between the two walls for oscillatory planar Couette flow. 
Results at different values of Kn and Knt in the early transition regime are compared with the DSMC data 
[48] and the solution of the linearised BGK equation [46]. For Kn < 0.1, the velocity amplitudes from the 
LR13 and LR26 equations agree with both DSMC data and kinetic theory up to Knt =1. When Kn = 0.5 
and Knt = 0.16, the LR26 equations are in good agreement with the DSMC data. However, when Kn = 1 
and Knt = 0.64, the LR26 equations can capture the velocity amplitude reasonably well but the LR13 
equations cannot follow the DSMC data in the whole domain, as illustrated in Figure 11(a). For the case 
with Kn = 0.886 and Knt =1, both the LR26 and LR13 equations fail to capture the velocity amplitude 
correctly, as indicated in Figure 11(b). 
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Figure 11: Normalised velocity amplitude of oscillatory planar Couette flow. Lines are from the  
macroscopic models. (a) Symbols are the DSMC data are digitised from Park et al. [48]. (b) Symbols  
are the linearised BGK data are digitised from Sharipov and Kalempa [46]. Adapted from Ref. [47]. 

One of the unique features in one-dimensional steady-state Couette flow is the constant shear stress across 
the whole domain at any value of Kn, even inside the Knudsen layer. However, this feature no longer 
exists when one of the plates oscillates. The amplitude of the shear stress is therefore presented in Figure 
12. When both Kn and Knt are small, the extended hydrodynamic models agree with kinetic theory, but 
when these Knudsen numbers are large, the discrepancies between them are very noticeable. The complex 
interplay of the length and time scales exacerbates the capabilities of the macroscopic equations to capture 
the non-equilibrium effects at high values of either Kn or Knt. 
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Figure 12: Normalised shear stress amplitude of the oscillatory planar Couette flow.  
Lines are from the macroscopic models. Symbols are the linearised BGK data  

are digitised from Sharipov and Kalempa [46]. Adapted from Ref. [47]. 

The velocity and shear stress phases, ϕu and ϕP, of oscillatory planar Couette flow are presented in Figure 
13. When Kn = 0.0886 and Knt = 0.1, the Stokes number, S, is equal to 4.473. The LR13 and LR26 
equations predict both ϕu and ϕP in excellent agreement with kinetic theory [46]. For Kn = 0.0886 and Knt 
= 1, the Stokes number reduces to 1.415. Although the LR26 equations are not able to predict um and Πm 
very well for this particular case, as shown in Figures 11(b) and 12, they do capture the phases, ϕu and ϕP,  
quite accurately in comparison with the kinetic data, as indicated in Figure 13. In contrast, when Kn = 
0.0886 and Knt = 1,  both the LR13 and LR26 equations are able to predict the velocity and shear stress 
amplitudes correctly, as shown in Figure 11(b), but fail to predict the corresponding phases. The LR26 
equations manage to follow the kinetic data within one quarter of L away from the oscillating wall but 
then start to overpredict ϕu and ϕP as we move further away from the moving wall, as indicated in Figure 
13. The Stokes number for this case is very high, equal to 14.14. At such a large Stokes number, inertia 
plays a major role in the flow dynamics. An analysis of the velocity amplitudes shown in Figure 11(b) 
indicates that the penetration depth for this case (Kn = 0.0886, Knt = 1) is 0.38L away from the oscillating 
wall. The lower stationary wall hardly feels the any effect from the motion of the upper wall. It is 
interesting to see that the LR26 equations can predict ϕu and ϕP, within the Stokes layer while the LR13 
equations fail to follow the trend of ϕu and ϕP, throughout the whole domain. 
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Figure 13: Velocity and shear stress phases of oscillatory planar Couette flow. Lines are  
from the macroscopic models. Symbols are the linearised BGK data digitised  

from Sharipov and Kalempa [46]. Adapted from Ref. [47]. 

7.4   Micro Driven Cavity Flow 
The driven cavity problem is a well known benchmark problem for testing and verifying continuum 
solvers [51]. The problem geometry is simple and two-dimensional, yet the flow pattern and heat transfer 
in the cavity are encountered in many engineering applications. However, few studies [52-54] have been 
carried out to examine the mass and heat flow patterns in a driven cavity for non-equilibrium gas flows. 
Recently, John et al. [55] performed a series of DSMC simulation of gas flow in a micro lid-driven cavity 
for a range of Knudsen number, Reynolds number and Mach number. The simulation results reveal 
interesting non-equilibrium phenomena in the cavity and provide useful data to benchmark the extended 
hydrodynamic equations. 

The configuration of the square driven cavity, of size L, is shown in Figure 14. The notations A, B, C, and 
D shown in the figure denote the four corners of the cavity. The top lid moves with a fixed tangential 
velocity Uw in the positive x direction, and the other walls are stationary. The wall temperature is set to the 
reference temperature, i.e., Tw = 273 K. Any variation in Knudsen number is achieved by changing the 
density conditions in the cavity, i.e., the reference pressure po.  The R26 moment equations discritised on a 
129x129 uniform grid are numerically solved for a range of Knudsen numbers in the slip and early 
transition regimes in comparison with the DSMC data. 
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Figure 14: Configuration of lid-driven cavity.      

One of the interesting phenomena in a driven cavity under non-equilibrium condition is the gas 
temperature distribution and heat flux direction. Shown in Figure 15(a) is the DSMC simulation of heat 
flux stream traces overlaid on temperature contours at Kn = 0.2 with Uw = 10 m/s. From the temperature 
contours, a cold region is found toward the left corner of the cavity, whereas a hot region is observed 
toward the right corner of the cavity. More interestingly, it is noted that the direction of heat flow is 
generally from the cold to the hot region, as illustrated by the heat flux streamlines. This represents a 
counter-gradient heat flux made possible by the rarefied flow conditions. Under non-equilibrium flow 
conditions, various factors such as expansion cooling, viscous heat generation, compressibility, and 
thermal creep could significantly affect flow and heat transfer. For the driven cavity case, an expansion 
cooling (gas temperature T less than wall temperature Tw) occurs at the top left corner of the cavity due to 
a drop in pressure which results in heat transfer from the wall to the gas, whereas viscous heat generation 
(T > Tw) results in heat transfer from the gas to the wall toward the right corner of the cavity. The direction 
of heat transfer is governed by both expansion cooling and viscous dissipation. The heat transfer plots in 
the driven cavity indicate that thermal energy transfer need not always be from a hot region to a cold 
region as continuum theory dictates. The temperature field and the heat flux streams predicted by the R26 
equations are presented in Figure 15(b). In comparison with Figure 15(a), the R26 equations capture the 
temperature field and the heat flux streams quite well except that the R26 equations overpredict the 
temperature drop and rise in the top left and right corner of the cavity, respectively. On the other hand, the 
NSF equations cannot predict thermal field neither quantitatively nor qualitatively, as illustrated in Figure 
15(c).  
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Figure 15: Comparison of heat flux stream traces overlaid on temperature contours computed 
by (a) DSMC, (b) R26 and (c) NSF for the driven cavity at Kn = 0.2 and Uw = 10 m/s. 

The predicted profiles of velocity, u and v,  shear stress, σxy, and temperature, T, by the R26 moment 
equations,  along the vertical and horizontal lines across the cavity centre are plotted in Figures 16–18 in 
comparison with the DSMC data [55] of Uw = 50 m/s and Kn = 0.1 and 0.5. When Kn = 0.1, the predicted 
velocities in both directions are in good agreement with the DSMC data as shown in Figure 16. As Kn 
increases to 0.5, the DSMC results show that the values of the slip velocity on the walls increase. However, 
the R26 equations overpredict about 10% of the slip velocity on the top moving wall. Away from the lid, 
the predicted u velocity agrees with the DSMC data quite well as shown in Figure 16(a). The agreement 
with the DSMC data for v velocity at Kn = 0.5 is not good close to the walls as well as away from the 
walls as plotted in Figure 16(b). However, the R26 equations predict the values of shear stress quite 
accurately on the vertical line for both Knudsen numbers as indicated in Figure 17(a). Figure 17(b) shows 
that the value of shear stress is overpredicted by the R26 equations on the horizontal line for Kn = 0.5. 
Here σo = μUw/L is a reference stress for normalization.  
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Figure 16: Comparison of normalised velocity profiles across the cavity centre.  
Lid velocity Uw= 50 m/s. Symbols: DSMC [55]; Lines: the R26 equations.  

(a) u velocity on a vertical line; (b) v velocity on a horizontal line.  
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Figure 17: Comparison of normalised shear stress profiles across the cavity centre. Lid velocity 
Uw= 50 m/s and σo = μUw/L.  Symbols: DSMC [55]; Lines: the R26 equations.  

(a) Shear stress on a vertical line; (b) Shear stress on a horizontal line.   

The predicted temperature profiles on the vertical and horizontal lines across the cavity are plotted in 
Figure 18 in comparison with the DSMC data, which are scattered. It is computationally expensive to 
reduce statistical noise for temperature field with DSMC simulation, particularly for flows in MEMS. 
Figure 18(a) shows that the gas temperature close to the moving lid is higher than the lid temperature. At 
Kn = 0.1, the temperature of gas increases as it moves into the cavity, then drops after it enters into more 
than 10% of the cavity depth. The R26 equations capture this trend well in good agreement with the 
DSMC data. At Kn = 0.5, the maximum temperature of the gas on the vertical line across the cavity centre 
is on the moving wall. The R26 equations underpredict the temperature jump significantly. The 
temperature of the gas is lower than Tw on the left while higher than Tw on the right as shown in Figure 
18(b). The predictions of the R26 equations are in reasonable agreement with the DSMC data. 
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Figure 18: Comparison of normalised temperature profiles across the cavity centre.  
Lid velocity Uw= 50 m/s.  Symbols: DSMC [55]; Lines: the R26 equations.  

(a) temperature on a vertical line; (b) temperature on a horizontal line. 
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7.5 Thermal Transpiration and Knudsen Pump 
The phenomenon of thermal transpiration or creep was discovered by Reynolds in 1879,  in which a gas 
will move along a solid surface due to inequalities of temperature [56]. It has been investigated 
theoretically and experimentally by various researchers over more than a century [57-65]. It is assumed 
that equal numbers of molecules arrive at the wall from the hot and cold regions. Molecules arriving from 
the hot region will have, on average, a higher velocity than those arriving from the cold region. Since the 
molecules are reflected diffusively at the wall, the resultant force on the wall due to the molecular 
collisions acts towards the cold region. An equal and opposite force is felt by the gas molecules, giving 
rise to a flow towards the hot region. Once the fluid starts to creep along the wall, the moving fluid layer 
interacts with the stagnant fluid layers adjacent to it, inducing a boundary layer. This phenomenon was 
used by Knudsen in 1910 to construct the first multistage thermal transpiration pump [58, 59]. 

A microscale gas pump is often required to form a complete micro system. Many issues have been 
encountered in attempting to shrink full-scale conventional pumps to microscales, such as manufacturing 
tolerances, pump oil, thermal inefficiency and short life time. The Knudsen pump has the advantages of no 
moving parts and supplementary pumping fluids.  A typical multistage Knudsen pump is a long pipe or 
channel with a periodic structure consisting of alternately arranged narrow and wide dimensions. The 
temperature along the pipe or channel is also periodic with a distribution increasing in the narrow parts 
and decreasing in the wide parts.  In the narrow parts where temperature increases, the pressure increases 
due to the non-equilibrium phenomenon of thermal creep. In the wide section, the thermal creep effect is 
less profound and the gas flow is closer to the continuum regime.  One of the modern versions of the 
Knudsen pump was designed by Pham-Van-Diep et al. [66], the ith stage of which is illustrated in Figure 
19. The performance of the modern Pham-Van-Diep pump has been studied by Vargo et al. [67] and 
Muntz et al. [68] using kinetic theory.  Other modern Knudsen pumps are reported by McNamara and 
Gianchandani [69] and Pharas and McNamara [70]. 

 

Figure 19: Illustrative ith stage of a Knudsen pump. Adapted from Ref. [67]. 

One of the major challenges in the design of the Knudsen pump is to ensure good thermal isolation 
between the hot and cold ends in the alternating heating and cooling structure. One way to avoid this 



Application of the Moment Method in the 
Slip and Transition Regime for Microfluidic Flows 

RTO-EN-AVT-194 11 - 37 

difficulty is to replace the alternating heating system by a central heating system.  Illustrated in Figure 20 
is a 3 staged Knudsen pump heated by a central heater on the right side to generate the necessary 
temperature gradient for thermal creep. The temperature gradient is largely determined by the thermal 
conductivity of the channel material and the length of the channels. As an example, it is assumed that 
temperature is linearly distributed between the hot and cold end with a temperature difference ΔT. The 
width of the narrow channel is designed to be 1 μm. The width of the wide channel is 5 times that of the 
narrow ones. The R26 equations are solved for different values of ΔT and Knudsen number Kno, which is 
based on the inlet condition. 
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Figure 20: An illustration of a central 3 stage heated Knudsen pump and gas flow velocity vectors in the 
pump. Red colour indicates hot and blue cold. The temperature on the walls is linearly distributed.  

Shown in Figure 20 are the velocity vectors in the central heated Knudsen pump for the case of Kno = 0.1 
and ΔT = 2K. Cold gas is driven towards the hot end in the narrow channels by thermal transpiration. In 
the wide channels, only the gas close to the walls is creeping towards the hot end. The gas away from the 
walls in the wide channels is pushed towards the cold end by the pressure generated in the narrow 
channels. The pressure changes Δp along the channel centre line from the inlet to the outlet are plotted in 
Figure 21 for Kno =0.1 and ΔT = 1K, 2K and 3K, respectively. The pressure is built up in the narrow 
channels and drops in the wide channels and when the flow changes direction. The width ratio of the 
narrow and wide channels will affect the pressure distribution. When the temperature difference between 
the hot and cold end increases, the pressure difference between the inlet and outlet increases. 
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Figure 21: Pressure change from the inlet to the outlet along the channel centre line. 

8.0 SUMMARY 

Gas flows in micro-electro-mechanical-systems suffer from non-equilibrium effects. The conventional 
hydrodynamic model, the Navier-Stokes-Fourier equations, is unable to capture these effects correctly in 
the slip and early transition regimes. In this lecture, we demonstrate that hydrodynamic models can be 
extended to account for non-equilibrium effects by introducing high moment equations, which can be 
derived from kinetic theory, into hydrodynamic models. From Kramers’ problem to the flow in a lid 
driven cavity, it is indicated that the R26 moment equation model, based on Grad’s moment method and 
Struchtrup and Torrilhon’s regularization procedure, can be used to predict non-equilibrium gas flows 
fairly accurately up to a Knudsen number of 0.5. The conventional numerical techniques for low speed 
flow in confined geometries can be readily used to solve the moment equations for engineering 
applications in MEMS.   
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